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Abstract 

If the magnitude of a cyclic loading history is raised above the shakedown limit for a perfectly plastic solid, two 

primary types of behaviour are possible. The body can either enter a ratchetting regime, where an increment of 

inelastic displacement occurs every cycle, or it can enter a reverse plasticity regime where there is zero growth 

of strain per cycle but, locally, a closed cycle of plastic strain occurs. Reverse plasticity occurs for thermally 

loaded structures when the thermal loading is dominant and also in rolling contact problems. For the evaluation 

of the strength of a body with cracks, there is no shakedown regime as reverse plasticity always occurs at the 

crack tip. The region of loading that bounds cycles for which reverse plasticity occurs is the ratchet limit, where 

strain growth, as well as reverse plasticity occurs. The presentation is concerned with strategies for evaluation 

the ratchet limit. 

The steady state cyclic state of stress for a body subjected to cyclic loading may be expressed in the general 

form; 

௜௝ߪ     ൌ ො௜௝ߪߣ ൅ ҧ௜௝ߩ ൅ ௜௝௥ߩ                                               ( 1) 

where  ߪො௜௝ denotes the linear elastic solution, ߣ a load scaling parameter, ߩҧ௜௝ a time constant residual stress field 

and ߩ௜௝௥  a varying component satisfying  ߩ௜௝௥ ሺͲሻ ൌ ௜௝௥ߩ ሺȟݐሻ for a typical cycle in the steady state, Ͳ ൑ ݐ ൑ ȟݐ. 

Corresponding to this cycle of stress, the cycle of plastic strain ߝ௜௝௣  is given by, 
௜௝௣ߝ     ൌ ҧ௜௝௣ߝ ൅ ௜௝௣௥ߝ

     (2) 

Where ߝҧ௜௝௣  is the distribution of (incompatible) plastic strain which gives rise to the constant residual stress field ߩҧ௜௝ and ߝ௜௝௣௥
 is the history of plastic strain that give rise to the time varying residual stress field ߩ௜௝௥ . By definition ߝ௜௝௣௥ሺͲሻ ൌ Ͳ and the accumulated strain per cycle is given by ߝ௜௝௣௥ሺȟݐሻ ൌ ȟߝ௜௝௣ , a compatible distribution of strain, 

the ratchet rate. Hence, in the reverse plasticity regime, ȟߝ௜௝௣ ൌ Ͳ in the steady state. 

The steady state is characterised by the following minimum theorem [2]. Consider the class of all plastic strain 

rates ߝሶ௜௝௖  so that; 

׬     ሶ௜௝௖୼௧଴ߝ ݐ݀ ൌ ȟߝ௜௝௖      (3) 

and ȟߝ௜௝௖  is compatible with a displacement increment  ȟݑ௜௖. For a given  ߣ the cyclic state is characterised by the 

minimum of the functional [2],    

ǡߣ൫ܫ    ሶ௜௝௖ߝ ൯ ൌ ׬ ׬ ሼ୼௧଴௏ ௜௝௖ߪ െ ሺߪߣො௜௝ ൅ ௜௝௖ߩ ሻሽߝሶ௜௝௖   (4)  ܸ݀ݐ݀

  
which is positive and minimised to zero by the exact cyclic solution ߝሶ௜௝௖ ൌ ሶ௜௝௣ߝ . Here ߪ௜௝௖  denotes the stress at 

yield associated with ߝሶ௜௝௖ Ǥ 
For values of ߣ in the shakedown regime, the varying component of the residual stress field ߩ௜௝௖ ൌ Ͳ and ߝሶ௜௝௖ ൌ Ͳ. 

At the shakedown limit ߣ ൌ ௜௝௖ߩ ௦, thenߣ ൌ Ͳ but ߝሶ௜௝௖  may be considered as infinitesimally small. Hence the result ܫ൫ߣ௦ǡ ሶ௜௝௖ߝ ൯ ൒ Ͳ yields the upper bound shakedown theorem [1]. It is important to notice that the upper bound 

shakedown theorem involves an infinitesimally small plastic strain rate history. Strategies for the minimisation 



of I, using the Linear Matching Method [1], as well as a number of programming methods are well developed, 

resulting in efficient upper bound methods for the shakedown limit 

At the ratchet limit the strain rate history consists of two components ߝሶ௜௝௖ ൌ ሶ௜௝௉௖ߝ ൅  ሶ௜௝௉௖ is a finiteߝ ሶ௜௝ோ௖ whereߝ

history satisfying,  

׬      ሶ௜௝௉௖୼௧଴ߝ ݐ݀ ൌ ȟߝ௜௝௉௖ ൌ Ͳ   (5) 

and ߝሶ௜௝ோ௖ is an infinitesimal strain rate history satisfying 

׬      ሶ௜௝ோ௖୼௧଴ߝ ݐ݀ ൌ ȟߝ௜௝ோ௖ ് Ͳ   (6) 

In parallel, 

ǡߣ൫ܫ     ሶ௜௝௖ߝ ൯ ൌ ǡߣ൫ܫ ሶ௜௝௉௖൯ߝ ൅ ǡߣ൫ܫ  ሶ௜௝ோ௖൯      (7)ߝ

ǡߣ൫ܫ    ሶ௜௝௉௖൯ߝ ൌ ׬ ׬ ሼ୼௧଴௏ ௜௝௉௖ߪ െ ሺߪߣො௜௝ ൅  (8)  ܸ݀ݐሶ௜௝௉௖݀ߝ௜௝௉௖ሻሽߩ

ǡߣ൫ܫ    ሶ௜௝ோ௖൯ߝ ൌ ׬ ׬ ሼ୼௧଴௏ ௜௝௉௖ߪ െ ሺߪߣො௜௝ ൅    (9)  ܸ݀ݐሶ௜௝ோ௖݀ߝ௜௝௉௖ሻሽߩ

Hence the ratchet limit is characterised by the simultaneous minimisation of ܫ൫ߣǡ ǡߣ൫ܫ ሶ௜௝௉௖൯ andߝ  ሶ௜௝ோ௖൯. This hasߝ

been achieved for cases where the elastic stress history is subdivided into a varying and a constant component 

when the two minimum problems may be solved in sequence. A particularly simple method is possible of the 

load history vary between two extremes [3,4,5] and may be extended to more complex histories [6]. But the 

primary interest is for a general method where a single load parameter ߣ is involved and this will be the subject 

of the presentation. 
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ABSTRACT

For structures subject to a combination of loads varying within a given load domain the static

and kinematic shakedown theorems, including the limit analysis theorem as a special case, fur-

nish the safety factor against plastic collapse, loss in functionality due to excessive deformation

or collapse due to low cycle fatigue.

Based on these theorems the so called direct methods evaluate the safety factor solving a

convex optimization problem, that for real structures discretized by means of finite elements,

usually require the solution of large problems. In the last decade starting from the Karmarkar

algorithm the interior point method revolution [2] has completely changed the way of solv-

ing convex nonlinear optimization problems. In particular efficient primal–dual interior point

methods have been developed for second order conic programming [3] to solve large problems

with hundreds of thousands of variables and constraints in a reasonable computational time.

Recently this method has also been applied to the reconstruction of the equilibrium path of

elastoplastic structures [4].

In an alternative fashion the safety factor can be evaluated by means of the complete recon-

struction of the equilibrium path, using standard strain driven strategies based on a return map-

ping scheme and its extension to shakedown [1]. While theoretically different, interior point

methods and strain driven path–following algorithms, are very similar from a computational

point of view. In this work a comparison is made to show the analogies of these methods. In

particular will be shown as strain–driven like procedures can be seen as a primal optimization

methods generating a converging sequence of safe states in the sense of the static (primal)

theorem. This sequence, at the solution, also satisfies the requirement of the kinematical (dual)

theorem.

In the paper a series of different algorithm to solve the problems and a comparisons respect to

accuracy, robustness and performances are presented.
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This paper presents a qualitative elastoplastic analysis of fretting and the prediction of crack 
initiation. We emphasize the comparison of three hardening behaviours in this context. The 
computational analysis is based on the estimation of the shakedown limit cycle and a fatigue 
prediction using a Dang Van or a Crossland criterion. 
 
The studied configuration is the interaction of a flat pad having rounded corners in contact 
with a flat substrate made of Inconel In718 or Titanium Ti64 alloys respectively. 
 
The shakedown state is analyzed using the cyclic and ratcheting strain concepts already 
discussed in the literature. 
 
The paper introduces a new variable to analyse the stick-slip regime. A series of slip maps is 
completely analysed showing that the hardening models do not introduce a significant 
difference between the stick-slip or fatigue predictions. 
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1. Introduction 
 
FEM-based limit and shakedown analyses of industrial problems with structures with 
kinematic hardening materials, based on lower bound approach have been developed and 
implemented in the general purpose FEM codes in [1]. In [2], [3] kinematic shakedown FE-
analyses have been performed for perfectly plastic materials. The upper bound theorems have 
been extended to bounded kinematic hardening in [4], [5]. In this work we derive an upper 
bound FE-algorithm for bounded linear kinematic hardening bodies. It is validated by 
analytical solutions for bounded kinematic hardening with the linear Melan-Prager rule and 
also compared to the nonlinear Amstrong-Frederick model [6], [7]. Shakedown of this 
nonlinearly hardening material has been treated in [8]. 
 
2. Melan-Prager bounded linear kinematic hardening model  
 
The linear Melan-Prager kinematic hardening model can be combined with a bounding 
surface to a two-surface plasticity model, see Fig. 1. For realistic materials, the stress σ  is 
bounded by the ultimate stress uσ . The yield surface can translate inside bounding surface 
constrained by back stress π , without changing its shape and size. If uσ  is equal to yσ , then 

bounding surface coincides to the initial yield surface, the two-surface model becomes a one-
surface model, and consequently, kinematic hardening becomes perfect plasticity. If 

2u yσ σ ≥ , the situation leads to the unbounded model. 

σ1

σ2 3σ

translated  surface

initial yield surface

π

bounding surfaceFu πF

Fy
back stress

σ

ε

σy

σu

surface

a) Projection of  surfaces on 
    deviatoric stress plane.

b) unidimensional curve

 
Figure 1: A model for bounded kinematic hardening 

 
The current surface for von Mises material is determined as: 

[ ] 2
yF σ− ≤σ π                                                                  (1) 

and its corresponding dissipation function pDπ  is: 

( ) ( ) ( )( )2
3, :p p p p p p p

u y u uDπ π π πσ= + +& & & & & &ε ε ε ε ε ε .                                               (2) 

The bounding surface for von Mises material is determined as: 

[ ] ( )2

u yF σ σ≤ −π                                                              (3) 



and its corresponding dissipation function p
uD  is: 

( ) ( ) ( )2
3 :p p p p

u u u y u uD σ σ= −& & &ε ε ε .                                                    (4) 

The total plastic strain tensor pε and plastic strain rate tensor p&ε  are composed of those two 
components: 

p p p
uπ= +ε ε ε ,      p p p

uπ= +& & &ε ε ε .                                                (5) 
The total plastic dissipation over V  defined as: 

( ) ( ) ( )
0 0

,
T T

p p p p p
p u u u

V V

W T dt D dV dt D dVπ π= +∫ ∫ ∫ ∫ε ε ε& & & .                                (6) 

3. An upper bound algorithm 
 
For a FE-discretization the upper bound shakedown limit blkhα +  is obtained as the minimum 

( ) ( ) ( )

( )
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      (7) 

where ,  ,  E
ik uik ikπε ε σ& &  denote respectively the vectors of back strain rate, ultimate strain rate, and 

fictitious elastic stress at Gaussian point i  and load vertex k ;  u is the nodal displacement 
vector, iB  is deformation matrix; 2nm = , n  is the number of varying loads; NG  is the total 

number of Gaussian points of the whole structure with integration weight iw  at Gaussian 

point i , 0ε  is a small parameter of regularization. D  is a diagonal square matrix. In a three-

dimensional problem it is the 6 6×  matrix: 
1 1 1

1 1 1
2 2 2

Diag
 =   

D .                                                 (8) 

For the sake of simplicity, some new notations in (9) will be used 

1 1
2 2

1
2

=                                       : crirtical value, von Mises yield criterion
3

,   : new strain rate vectors
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       (9) 

Then problem (7) could be rewritten as: 

( ) ( ) ( )

( )

2 2

1 1

ik
1

2 min        (a)

ˆ        1,                                                                        

. :

m NG
Tu y T

blkh v uik uik ik uik ik uik
k i y

m

uik i
k

k

i NG

s t

π π

π

σ σ
α ε ε

σ
+

= =

=

 −
 = + + + + +
  

+ = ∀ =

∑∑

∑

e e e e e e

e e B u

& & & & & &

& &

( )

( )
1 1

 (b)

1
      1,      1,                                                      (c)

3

1                                                                       

M ik uik

m NG
T

ik uik ik
k i

i NG k mπ

π
= =

+ = ∀ = ∀ =

+ =∑∑

D e e 0

e e t

& &

& &                   (d)











          (10) 

 



Let ppα +  and blkhα +  denote respectively the upper bound shakedown limit load in perfect 

plasticity, and in bounded linear kinematic hardening with the same yield stress yσ , then: 

u
pp blkh pp

y

σα α α
σ

+ + +≤ ≤ .                                                         (11) 

The first equality occurs when 0uik =e& , (existing yield surface is strictly below bounding 
surface), and the second equality occurs when 0ikπ =e& , (existing yield surface is fixed on 

bounding surface). In all other cases strict inequalities u
pp blkh pp

y

σα α α
σ

+ + +< <  occur 

when 0 and 0ik uikπ ≠ ≠e e& & , (existing yield surface moves on bounding surface). 
 
4. Validations 
 
The test has been done for the structure in Fig. 2a, subjected to combined tension and torsion 
loading: 

[ ]max max

Tension: : dead load

Torsion: ,

N

M M M


 ∈ −

                                                     (12) 

The material: 485 MPa, 1.3y u yσ σ σ= = . The geometry: 12.7 cm, 11.17 cma iR R= = .  

The interaction diagram of the load factors of tension vs torsion in the Fig. 2b is normalized 
by limit loads of perfect plasticity material. 
Analytical solutions 
With the load domain in (12), the shakedown condition for the bounded linear Melan-Prager 
model is [7]: 

( )
( ) ( )

1

3

221

3

                                       for 0

       for 

y N u y

mp

y N y u u y N u

σ σ σ σ
τ

σ σ σ σ σ σ σ σ

 ≤ ≤ −
= 
 − + − − < ≤


                            (13) 

and for the nonlinearly kinematic hardening Amstrong-Frederick model is [7]: 

2 21

3
y

af u N
u

σ
τ σ σ

σ
= − .                                                          (14) 

FE analysis 
Using 20-node volume elements, if 1u yσ σ =  the results exactly the same of perfectly plastic 

are obtained. It is expected that the results close to the curves plotted for 1.3u yσ σ =  in Fig. 2 

for the Melan-Prager and Amstrong-Frederick models are found. 
 
 
 
 
 
 
 
 
 

 
 

Figure 2: FEM mesh and interaction diagram of plastic and shakedown factors 
 

(a) FEM mesh (b) interaction diagram of plastic and shakedown factors 
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Abstract 

     The plastic collapse limit and the shakedown limit which define the load-carrying 
capacity of structures are important in assessing the structural integrity. Due to the high 
expenses of experimental setups and the time consuming full elastic-plastic cyclic 
loading analysis, the determination of these limits by means of numerically direct 
plasticity methods has been of great interest to many designers. Moreover, a certain 
evaluation of structural performance can be conducted only if the uncertainty of the 
actual load-carrying capacity of the structure is taken into consideration since all 
resistance and loading variables are random in nature. To ensure the safety of the 
structures to be designed, two approaches are normally used. (1) The classical approach 
fixes the values of the safety factors and chooses the values of the design variables to 
satisfy the safety conditions. All the variables involved are then assumed to be 
deterministic and fixed to particular quantiles, i.e. mean value or characteristic values. 
(2) The probability-based approach deals directly with realistic random variables to find 
the global probability of failure as the basic design criterion. Obviously, the later 
problem is more difficult since the evaluation of the probability of failure is not an easy 
task [1], [2]. 

     Effective method for stress analysis is essential and of fundamental importance for 
structural reliability analysis. Very recently, Liu et al. [3] proposed an edge-based 
smoothed finite element method (ES-FEM) for static, free and forced vibration analyses 
of solid 2D mechanics problems using triangular elements (T3). Intensive numerical 
results have demonstrated that ES-FEM possesses the following excellent properties: 
(1) ES-FEM-T3 is much more accurate than the FEM using linear triangular elements 
(FEM-T3) and often found even more accurate than those of the FEM using 
quadrilateral elements (FEM-Q4) with the same sets of nodes; (2) there are no spurious 
non-zeros energy modes found and hence the method is also temporally stable and 
works well for vibration analysis and (3) no penalty parameter is used and the 
computational efficiency is much better than the FEM using the same sets of elements. 
The ES-FEM was then developed for static and eigenvalue analysis of two-dimensional 
piezoelectric structures [4].  

     This paper aims at presenting a new algorithm for probabilistic limit and shakedown 
analysis of structures with the help of the ES-FEM. The algorithm includes a 
deterministic limit and shakedown analysis for each iteration step which is based on the 
primal-dual approach. The loading and material strength are to be considered as random 
variables. The limit state function separating the safe and failure regions is defined 
directly as the difference between the obtained limit load factor and the current load 
factor. A Sequential Quadratic Programming (SQP) is performed for finding the most 
probable failure point, the so-called design point. Sensitivity analyses are obtained 
numerically from a mathematical problem and the probability of failure is calculated by 
the FORM. Using constant smoothing function which leads to local constant smoothing 
domains constructed on edges of elements, only one Gaussian point is required for each 
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smoothing domain ensuring that the total number of variables in the resulting 
optimization problem is kept to a minimum compared with standard finite element 
formulation. Moreover, this results in a true lower bound coupling with a true upper 
bound obtained by displacement-based finite element method since the yield condition 
is fulfilled at all points in the problem domain. This direct approach reduces 
considerably the needs for uncertain technological input data, computing costs and the 
numerical error [5, 6]. 
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Limit analysis and conic programming for

Gurson-type spheroïd problems

F. Pastor, Ph. Thoré, D. Kondo, J. Pastor

In the famous paper [4], Gurson proposed an upper bound limit analysis
approach of a hollow sphere with a von Mises solid matrix. The computation
has been performed under uniform boundary strain rate conditions and led
to a macroscopic yield function of the “Porous von Mises”-type materials.

Several extensions have been further proposed in the literature, the most
probably important developments being those accounting for voids shape
effects [2], [1], [5]. More recent extensions of the Gurson model deal with the
plastic compressibility of the matrix with Drucker-Prager criterion, as it is
the case for polymers or cohesive geomaterials [3]. For validation purpose of
these recent models, and for reference solutions in the compressive matrix
case, there is a need of numerical solutions, which is the purpose of the
present communication.

First, in the case of a Drucker-Prager matrix and for spherical cavities
we analyze the possibilities of combining the exact spherical solution for
the hollow sphere model with a homogeneous strain rate field. Using the
kinematical approach under axisymmetry assumption, the resulting problems
are analytical conic programming ones, solved with the specific code mosek.
The final results show the impossibility, using such two velocity fields, to
obtain a good estimate of the macroscopic criterion without relaxing the
local plastic admissibility as made in [3].

To obtain pertinent rigorous bounds to the exact solutions in terms of
limit analysis, we have improved the kinematical and static 3D-FEM codes
of [7]. The kinematical problem is formulated in such a way that either the
Drucker-Prager and von Mises criteria can be indifferently solved. In both
codes, using specific changes of variables, the resulting formulations have
allowed to significantly refine the discretization and to obtain better bounds
to the macroscopic criteria for spherical cavities. Finally the discretization

1



of the hollow sphere was modified to take into account the case of oblate
cavities confocal with the spheroid boundary.

Extended comparisons with the previously mentioned works (then for von
Mises matrices) will be presented, in both cases of Hill-Mandel homogeneous
conditions and for oblate cavities. Then, we give a detailed comparison with
the “Porous Drucker-Prager” estimation of [3], and first results for oblate
cavities where the bounds are acceptable for friction angles lower than twenty
degrees, but too distant above this angle value for the moment.
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A selective algorithm for solving large-scale problems in 
shakedown analysis 
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This work is focused on the calculation of shakedown load-factors of structures subjected to variable loads by using 
the lower-bound theorem of shakedown analysis. The resultant optimization problem is solved by an algorithm based on the 
Interior Point method which has already proven its capability to solve industrially important problems. In general, the 
solution of such large-scale problems leads to a large number of unknowns and constraints and thus turns out to be very 
computationally intensive in many cases. In order to reduce calculation time without unacceptable loss of accuracy a new 
selective algorithm is introduced that only takes into account those constraints that belong to so-called ‘active’ elements.  
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Elastoplastic analysis is an important procedure to determine the capacity of a structure beyond 

its elastic limits. In the course of this analysis, the external loads are continuously applied with 

more and more structural components yielding. A series of elastic analyses are therefore 

generated by modifying the mathematical model of the structure to account for reduced 

resistance of yielding components. The procedure consists of the superposition of these 

analyses and stops when the structure cannot carry any further load and becomes unstable, or 

until a predetermined load limit is reached. Thus a good estimate of the strength of the 

structure as well as of its ductility can be made. 

The force method of analysis is well suited to formulate a plasticity problem since the main 

conditions, i.e. equilibrium conditions, are satisfied in an exact manner throughout the whole 

structure. The difficulty of the method is its automation. This may be provided by the graph 

representation of a frame. In this representation, a member and a node of the frame are a 

member and a node of a directed graph, respectively. The foundation node may be considered 

as an extra node and each foundation node is connected to the ground node with an extra 

member; then there is a unique number of independent closed loops, called the Betti number. 

The automatic way to unveil these loops [1] provides a set of hyperstatic forces to be utilised 

within the force method.  

A novel numerical approach, which uses the algorithm [1] together with a mathematical 

programming algorithm, will be discussed in the present work. The elastoplastic problem, as 

described in the first paragraph, is formulated as a, plastic hinge based, incremental one, that 

requires the solution of a parametric convex quadratic programming (PQP) problem between 

two successive plastic hinges. A fictitious load factor is used to convert the PQP problem to a 

QP one. The solution of the QP problem by an effective algorithm [2], establishes a feasible 

direction on which the true solution lies. The real solution is then found, simply on the demand 

of the formation of a new plastic hinge that is closest to open. Possible plastic unstressing is 

automatically accounted for [3]. Two different numerical procedures for either pure bending or 

for bending and axial force interaction, based on the above described concept, will be 

presented. Examples of application under monotonic or variable loading will also be included. 

Results show that the procedures are stable and computationally efficient as they require much 

less time than the alternative procedures which are based on the direct stiffness method. 
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Abstract: 

Based on homogenization theory and large scale nonlinear programming, this paper 

investigates the elastic and plastic properties of periodic composites subjected to variable 

loading.  After evaluation of homogenized elastic and plastic material properties of 

composites, shakedown and limit analysis are performed in macroscopic scope for the 

further plastic design. The optimal design variables, such as fiber distribution and various 

volume fractions are also investigated.   



EXTENSION OF THE LINEAR MATCHING METHOD TO SOFTENING MATERIALS   
 

 O. Barrera, A.R.S Ponter, ACF Cocks. 

 

ABSTRACT:  

 
An extension of the Linear Matching Method (LMM) is described which takes into account material softening. . It is 

well known that localized strain softening behavior can result in the premature failure of structural components. There 

are a number of circumstances where softening is relevant, for example: local buckling of beams in portal frames; local 

buckling in sandwich shell structures; and degradation in strength of composite structures due to internal cracking and 

fiber failure.  For beam type elements the local constitutive instability is evidenced by a decrease of the bending 

moment with increasing flexural rotation.  Different methods have been proposed in the literature to evaluate the 

response of structural systems that exhibit local softening.  The most common approach consists of a step-by-step 

analysis of the behaviour under increasing load.  Even though this type of approach can provide a detailed description 

of the structural response, it is computationally demanding.  Direct or bounding methods are more ideally suited to the 

initial stages of design.  Cocchetti and Maier [1] have consolidated and summarised the application of mathematical 

programming methods to the limit analysis of portal frames. These methods have been extended to the behavior of 

elastic-softening plastic portal frames by Ferris and Tin-Loi [2] and Tangaramvong and Tin-Loi [3,4], who emphasize 

the importance of Mathematical Programming with Equilibrium Constraints (MPEC) methods.  In this context, the main 

objective of the present work is to investigate the extension of the Linear Matching Method to evaluate the maximum 

load that an elastic-plastic frame structure can withstand when material or element softening is present.  Linear 

Matching Methods are a class of programming methods where, at each iteration, equilibrium and compatibility are 

satisfied and convergence is imposed by ensuring material consistency. Convergence proofs have been derived for 

classical limit analysis by Ponter et al [5] and shakedown by Ponter and Engelhardt [6].  

In this paper a three step LMM procedure is described which systematically evaluates the structural response for 

different level of softening.   Consider a structure composed of an elastic-plastic material that exhibits softening  The 

constitutive behavior is assumed to be holonomic, neglecting any ‘‘local unloading’’ that can occur. We consider the 

moment-rotation relationship indicated in Fig.1, where three different regions can be distinguished: elastic region (e), 

plateau region (δ ), and softening region (s).  The structure is subjected to a set of proportional loads iFλ  and the 

objective is to find the nodal displacements c
i∆  and rotations  c

jΦ  that will yield the largest value of the load factor λ, 

indicated  by MAXλ  .   

The process of evaluating the maximum load consists of the following three major steps:  

1) The LMM is employed to determine the maximum load at which I
cΦ≤Φ  throughout the structure, where IcΦ  

is the curvature at the start of the softening region as illustrated in fig 1 . 

2) The range of values of the softening slope P for which the load can be increased beyond that determined in (1) 

is identified. 

3) For values of P which satisfy the criterion established in (2) the maximum load , MAXλ ,that the structure can 

withstand is determined through a two stage iterative procedure based on the LMM. 

 

In order to illustrate the method, we consider the response of the single story portal frame of Fig 2, which is subjected to 
an horizontal load H and a vertical load V=αH.  We present results for L=10m and α =0.25, with the horizontal load H 



identified with λ L/Mc. We consider the situation where the initial rotational stiffness R=45 kNm and 033.0=cφ , so 

that the plastic moment 48.1=cM kNm. We assume the extent of the plateau region 01.0=−= c
I
c φφδ . The first step 

provides the value of the maximum load MAX
01.0=δλ at which I

cΦ≤Φ  (Fig 1). The associated maximum load is 

576.001.0 ==
MAX
δλ . The second step is employed to find the value of the critical slope Pcrit, below which the load can be 

increased beyond 576.001.0 ==
MAX
δλ . We find Pcrit is equal to 22 kNm. Results for the third step of the procedure are 

shown in Fig 3. In less than ten iterations the static and kinematic bounds to the maximum load multiplier coincide, 

giving the exact solution for MAXλ , which is a function of the slope P, as illustrated in Fig 3.. When P=0 the 

constitutive model reduces to perfectly plastic material behaviour, so that the maximum load is the limit load for the 

structure ( Lλ ).  It can be seen in Fig 3 that MAXλ  decreases monotonically from the limit load multiplier 594.0=Lλ  

to 576.0=MAX
δλ  as P is increased from 0 to 22 kNm.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The method has been applied to frame structures with increasing numbers of degrees of freedom . It has been noted that 

stable solutions are obtained for high and low levels of softening, but numerical instabilities in the procedure can occur 

for intermediate degrees of softening, in the vicinity of Pcrit  
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With the increase of train speeds and axle loads, rolling contact fatigue of railway wheels has become an 

important issue with respect to failure. Three types of fatigues in wheels are accounted for: surface 

initiated fatigue, subsurface initiated fatigue and fatigue initiated at deep material defects. Even if 

simplified models, like the shakedown map, may be used to analyze and predict the surface fatigue, such 

approaches are not sufficiently precise to compare different steel grades. Two steels usually used for the 

manufacturing of wheels have been studied: R9T, 50CrMo4.  

The aim of this work is to develop an approach which is able to compare the different steel grades 

according to practical conditions. The main stages are the identification of the material behavior, the 

determination of the stress-strain fields and the application of a fatigue criterion. 

  

The identification of material behavior has been done from cyclic mechanical tests. Plastic models with 

linear and non linear kinematic hardening laws have been identified for the numerical model. 

Stress and strain responses have been calculated using an eulerian description of the wheel-rail contact in 

order to limit the size of the finite element model. Computations have been performed with Abaqus 

software. Several cases of loading have been explored by varying the vertical load and the sliding velocity. 

The stress and strain fields are determined in stationary regime. Numerical results give several cases of 

mechanical behavior: elasticity, elastic shakedown, plastic shakedown and ratcheting. Simulations are 

realized and compared with the shakedown map results.  

As a first step, the Crossland multiaxial fatigue criterion has been used for the high cycle fatigue analysis in 

the case of elastic shakedown. 

 

The different steel grades have been compared in terms of mechanical behavior for several levels of 

vertical loads and friction coefficients. Results show that the threshold of elastic and plastic shakedown 

differs depending on the steel grades and consequently the risk of damage can be affected. 

 

Finally, the results are analyzed in terms of level of in-phase and out-of-phase stress loading, hydrostatic 

pressure and shear stresses showing the limits of the Crossland criterion and the difficulties to identify an 

accurate fatigue criterion. 

 

This methodology allows a classification of the material grades face the risk on rolling  contact fatigue. 

 

 

 

 

 



 
 

Elastic plastic responses of a two-bar system with 
temperature-dependent elastic modulus under cyclic 

thermomechanical loadings 
 

Simon Hasbroucq, Abdelbacet Oueslati, Géry de Saxcé 
 
This work is concerned with the inelastic responses of a two-bar system with temperature-
dependent elastic coefficients under cyclic thermomechanical loadings. It is found that the 
structure evolves toward a periodic limiting state as for classic elastoplasticity. In order to 
understand how Melan-Koiter method works for such materials, the evolution of the 
structure's response until the stabilization of the plastic strain (shakedown) or the asymptotic 
dissipative behaviour (alternating plasticity or ratchetting) is analytically addressed and the 
Miller's diagram is then constructed. In passing, we show that shakedown results results 
present a counter example to the Halphen's shakedown conjecture for materials with 
temperature-dependent elastic properties. Finally, numerical results performed by an 
incremental finite element procedure are presented and compared to analytical ones. 
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This contribution addresses the problem of evaluating the overall yield strength properties 

of soils reinforced by linear inclusions from those of their individual components, as well as 
from the reinforcement volume fraction and orientation. This question may be dealt with by 
resorting to the yield design (or limit analysis) homogenization theory ([1], [2]), according to 
which the macroscopic strength criterion of the composite reinforced soil can be determined 
from the solution to a yield design boundary value problem defined over the reinforced soil’s 
representative volume. In the commonly encountered situation when the soil is reinforced by 
continuous linear inclusions of small cross section, but made of a highly resistant material 
(metal, concrete), the macroscopic strength condition can be given a fully analytical 
formulation ([3]), which clearly reveals the strength anisotropy of the homogenized reinforced 
soil, due to the reinforcement preferential orientations. 

 
The validity of such a yield design homogenization procedure is assessed on the illustrative 

problem of the plane strain compressive resistance of a transversely reinforced block. A 
comparison is presented between the homogenization-based prediction and numerical 
simulations performed on the composite specimen where the reinforcements are regarded as 
individual elements embedded in the soil. It is shown that the numerical predictions do 
converge to that derived from the homogenization procedure as a scale factor, defined as the 
ratio between the spacing between two adjacent reinforcing inclusions and the overall size of 
the reinforced specimen, tends to zero. From an engineering standpoint, the practical 
applicability of such a mathematical convergence result requires that the scale factor be 
sufficiently small, which is obviously the case for industrial composite materials, but remains 
highly questionable for reinforced soil structures, since in most cases such a scale factor may 
be of the order of 0.1. 

 
Conceived as an extended or generalized homogenization procedure, a multiphase model is 

then advocated for ascertaining the overall yield strength of reinforced soils, taking into 
account the previously mentioned “scale effect” in an explicit way. According to this model, 
the reinforced soil is perceived as the superposition of two continuous media, namely the 
matrix phase representing the soil on the one hand, the reinforcement phase, which represents 
the array of reinforcing inclusions, on the other hand. While the strength properties of each 
phase are described by means of a failure condition, a specific strength condition can be 
assigned to the interaction forces between both phases. Provided that such an interaction 
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strength parameter be properly identified, the above mentioned scale effect can be fully 
captured by the two-phase model, thus recovering the results of the numerical simulation. 

 
The results presented in this contribution are the “yield design/limit analysis” equivalent of 

those already established in [5] in the context of a linear elastic behaviour. 
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Astract. 
 
The behavior of soils reinforced by micropile networks, first developed in the fifties [1], is 
still not fully understood due to the lack of accurate modelling capabilities. 
 
Particularly, the complex geometry of large soil-micropile systems makes accurate calculation 
of the bearing capacity of the reinforced soil a computational challenge. This complexity, 
arising from the high aspect ratio of micropiles and the large number of micropiles typically 
composing a network, requires highly detailed and finely discretized models to achieve 
reasonable accuracy using direct numerical methods. Such models lead to large scale 
numerical optimization problems that are hardly tractable using a personal computer.      
 
Homogenization techniques [2] constitute an attractive alternative for efficiently modelling 
the behavior of the soil-micropile medium, however, inevitable homogenization errors remain 
significant near the interface with the natural soil. 
 
In a recent work [3], a decomposition method has been proposed as a strategy for 
systematically solving very large kinematic limit analysis problems with limited computing 
resources.  It consists of splitting the original problem into limit analysis subproblems that are 
smaller in size. In [4] the static implementation of the decomposition was applied to a 
compressed bar and the classical vertical cut problems.    
 
The proposed paper reports enhancements made to the original decomposition method, 
allowing the method to solve the classical punch problem presented as a test problem, and 
then describes the application of the decomposition method to determine rigorous kinematic 
and static bounds to the bearing capacity of a soil reinforced by a micropile network 
according to a 2D plane strain model.  
 
The punch problem, a representation of Prandtl’s classical problem with finite domain, is 
considered here for i/ being a simple, limit case of a soil reinforced by mircopiles, for which 
the solution is known a priori, that is the case with no reinforcement, ii/ exhibiting a feature 
that has not been tested so far in decomposition, that is the absence of a loaded zone in some 
subproblems.  
 
The mixed kinematic variant of the decomposition, detailed and illustrated in [3-4] on the 
compressed bar and the vertical cut problems, is applied to compute upper bounds for 
Prandtl’s punch problem and the micropile reinforced soil problem.     
 
Then, the static adaptation of the decomposition is presented and applied for the first time on 
a problem exhibiting unloaded subdomains, embodied here by the punch problem. The issue 
pertaining to subdomains without loaded zones is that no change in the stress field within the 



subdomain follows directly from variations in the global load parameter while the interface 
stresses are kept constant.  As a result, this load parameter cannot be used as a driver of 
convergence of the stress field in all subdomains.  
In order to force the stresses to evolve in an unloaded subdomain, the corresponding 
subproblem is posed as that of minimizing the cohesion of the Tresca-Coulomb (or Drucker-
Prager) soil considered as a variable, while maintaining the stresses constant at the interfaces. 
This creates a buffer with respect to the failure criterion that allows subsequent scaling of the 
stress field in the unloaded subdomain, consistently with the changing loading acting on 
remote zones.  
 
The soil, bounded below by a substrate at depth H, is to be reinforced by a group of four 
micropiles of length L with the purpose of supporting a load F. Due to symmetry, only half 
the domain is modeled. The numerical optimization problems arising from the finite element 
limit analysis (sub)problems involved in this work are all solved using the conic programming 
code MOSEK.   
 
With the direct solution approach, for meshes of more than 25,000 triangles, the optimization 
code MOSEK fails to give optimal solutions for the static problem. Beyond this size, the 
problem can only be solved by the decomposition approach.  
With the mixed kinematic approach, the largest mesh that can be treated by direct solution 
counts 10080 elements. For this mesh, the kinematic bound is 1134.6 and the static bound is 
35.5. With a partition into four subdomains the solution becomes possible by decomposition 
with a 40320 finite element mesh . The gap between bounds is narrowed down substantially, 
with the static bound increased to 36.4 and the kinematic bound lowered down to 41.08. 
These bounds can be improved using the same computational resources by further refining the 
partition. 
 
With this degree of discretization, visualization of the stress and the velocity fields at the limit 
state clearly reveals the behavior pattern of the soil-micropile system which is known to vary 
from a footing like to a pile like pattern depending on the geometric characteristics of the 
problem. 
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Abstract

In the last decade, size-dependent effects in nanomaterials including materials con-
taining nano-voids have focused the attention of many researchers. Early works have
tried to model the transition zone between the nano-inclusion and the surrounding
matrix as a thin but still three-dimensional layer [7],[5]. An alternative approach
consists in adopting an interface description which is two-dimensional in nature.
Progress has been gained in the understanding of inclusion size effects on the ef-
fective elastic properties. Classical homogenization schemes [1] as well as first order
bounds in the theory of elastic heterogeneous media have been extended in order
to incorporate interface and interface stresses (see e.g. [2],[6],[4]).

In contrast, it seems that few attention has been paid so far to the question
of the effective strength of nanomaterials with account for interface effects. In the
context of the ductile failure of porous materials, the Gurson model [3] is well known
to provide a efficient approach of the strength reduction due to the porosity. The
purpose of the present communication is to extend this model in order to capture
the influence of interface stresses.

To begin with, in view of subsequent extensions, the basic features of the classical
Gurson approach for ductile porous media are recalled. Then, they are extended
to incorporate the surface/interface stresses effect at the nano-scale. For capillary
forces, the yield surface is shown to be obtained by a mere translation of Gurson
one. For interface stresses obeying a von Mises criterion, the parametric equations
of the yield surface are derived. The magnitude of the interface effect is proved to
be controlled by a non dimensional parameter depending on the voids characteristic
size.
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ABSTRACT

In the frictional contact of solids under cyclic loads, the shakedown be-

haviour of the relative displacement is of interest in the same spirit as the

plastic deformation in plasticity. Cumulative slips may lead to the failure

due to large relative displacements of the components of an assembly while

cyclic slips are often undesired because of wear and fretting fatigue problems.

Under Coulomb friction, it is well known that Melan and Koiter theorems are

generally not available, except in certain particular cases. In this discussion,

the particular case of small coupling between the contact pressures and the

slip-displacements is considered. This assumption means that the tangent

displacements have small or no influence on the contact pressures which can

be then computed from the elastic response as in the uncoupling case. The

pressure is thus a given time-dependent function and the Coulomb criterion

is reduced to a Mises-like standard law of friction. It is shown here that

Melan and Koiter theorems can be applied again as in standard plasticity.

The dependence of the yield limit on the loading amplitude is however not

classical and the extension of the static and kinematic approaches is discussed

to obtain the critical shakedown load or the limit load. The validity of the

assumption of small coupling is also explored by numerical simulation in an

example of car conrod.


